磁流变液的制备、机理和应用(1)

来源:真空技术网(www.chvacuum.com)中国科学院材料力学行为与设计重点实验室 作者:龚兴龙

1、引言

  磁流变液(Magetorheological Fluid,简称MRF)和磁流体(Magnetic Fluid,简称MF)是两个容易混淆的概念。虽然它们都是用磁性微粒分散在合适的液态载体中形成的,但由于悬浮粒子的尺寸范围不同,因而它们的物理特性和应用领域也不同。

  从粒子材料和尺寸上说,磁流体中悬浮粒子的直径在1~10nm范围内,通常用合适的表面活性剂将悬浮粒子分散在液体中,由于粒子的尺寸小,布朗运动可以阻止粒子沉淀和团聚,其稳定性能好;而磁流变液,悬浮粒子的直径为0.1~500μm,粒子较大,布朗运动无法阻止颗粒沉淀和团聚,必须采取如表面包裹、复合等方法来降低整个颗粒的密度,提高材料的稳定性。从受外加磁场作用而表现出来的力学性能看,磁流体的屈服应力变化通常在几Pa到几百Pa之间;而磁流变液的屈服应力变化通常可达数十kPa,比磁流体的控制范围大得多。再从二者应用角度看,磁流体主要是利用其粘度变化进行物质分离,机械装置的承载和密封等;而磁流变液主要是利用其提供的大剪切力矩,制作阻尼器件,实现阻尼控制和力矩传递。

  本文尝试就我们的研究工作,向各位磁流体研究者介绍磁流变液的制备、机理、测试、应用和发展。

2、磁流变液的研究概况

  1948年Rabinow首先提出了磁流变液的概念。它是将微米尺寸的磁极化颗粒分散于非磁性液体(矿物油、硅油等)中形成的悬浮液。在零场情况下,磁流变液表现为流动性能良好的液体,其表观粘度很小;在强磁场作用下可在短时间(毫秒级)内表观粘度增加两个数量级以上,并呈现类固体特性;而且这种变化是连续的、可逆的,即去掉磁场后又恢复到原来的状态。然而,从50年代到80年代期间,由于没有认识到它的剪切应力的潜在性以及存在悬浮性、腐蚀性等问题,磁流变液发展一直非常缓慢。进人90年代,随着制备技术的提高,磁流变液研究重新焕发了生机,成为当前智能材料研究领域的一个重要分支。

  目前国外已有十几个国家投巨资,对该项目进行加速研究和开发,竞相发展这一技术。美国LORD公司的Carlson和Weiss等人在磁流变液性能研究和应用开发方面取得了较为突出的成就,使LORD公司在国际上第一个推出商用磁流变器。美国加州州立大学的Zhu和Liu等人对磁流变液的流变学,特别是微观结构进行了大量深入的研究。美国Notre Dame大学的Dyke和Spencer等人将磁流变液阻尼器用于大型结构地震响应的控制。另外,白俄罗斯传热传质研究所的Kordonski等人在磁流变液的抛光和密封应用方面取得了较大的进展。德国Kormann等人在对颗粒直径、表面层等作了适当修饰改进后,已研制出稳定的纳米级磁流变液(具有和磁流体几乎完全相同的组成),在0.2T的中等磁场作用下,屈服应力可达4kPa。我国的磁流变液研究工作起步较晚,近几年来国内先后有中国科技大学、复旦大学、重庆大学、西北工业大学、中科院物理所、重庆智能材料结构研究所等数十家科研机构和院校也都相继开展此方面的研究工作。随着研究的深入和MRF性能的提高,该技术开始在机械工程、汽车工程、控制工程、精密仪器加工及航空航天等领域得到初步的应用,已显示了巨大的市场应用潜力。

3、磁流变液的制备

  磁流变液一般由铁磁性易磁化颗粒、母液油和稳定剂三种物质构成。铁磁性(软磁性)固体颗粒有球状、棒状和纺锤状三种形态,密度为7~8g/cm3,其中球形颗粒的直径在0.1~500μm范围内。目前可用作磁流变液的铁磁性固体颗粒是具有较高磁化饱和强度的羰基铁粉、纯铁粉或铁合金 。由于羰基铁粉饱和磁化强度为2.15特斯拉,且物性较软、具有可压缩性、材料成本低、购买方便,已成为最常用的材料之一。磁流变液的母液油(分散剂)一般是非导磁且性能良好的油,如矿物油、硅油、合成油等,它们须具有较低的零场粘度、较大范围的温度稳定性、不污染环境等特性 。稳定剂用来减缓或防止磁性颗粒沉降的产生。因为磁性颗粒的比重较大,容易沉淀或离心分离,加入少量的稳定剂是必须的。磁流变液的稳定性主要受两种因素的影响:一是粒子的聚集结块,即粒子相互聚集形成很大的团;二是粒子本身的沉降,即磁性粒子随时间的沉淀。这两种因素都可以通过添加剂或表面活性剂来减缓。由超精细石英粉形成的硅胶是一种典型的稳定剂,这种粒子具有很大的表面积,每个粒子具有多孔疏松结构可以吸附大量的潮气,磁性颗粒可由这些结构支撑均匀地分布在母液中。另一方面,表面活性剂可以形成网状结构吸附在磁性颗粒的周围以减缓粒子的沉降。稳定剂必须有特殊的分子结构,一端有一个对磁性颗粒界面产生高度亲和力的钉扎功能团,另一端还需一个极易分散于某种基液中去的适当长度的弹性基团。

  将这三种物质按一定的比例混合均匀,即可形成磁流变液。良好的磁流变液必须具有下列性能:

  (1)具有优良的磁化和退磁特性,以保证磁流变液的磁流变效应是一种可逆变化。因此这种流体的磁滞回线必须狭窄,内聚力较小,而磁导率很大,尤其是磁导率的初始值和极大值必须很大;

  (2)应具有较大的磁饱和特性,以便使得尽可能大的“磁流”通过悬浮液的横截面,从而给颗粒相互间提供尽可能大的能量;

  (3)应具有较小的能量损耗,在工作期间,全部损耗(如磁滞现象、涡流现象等)都应该是一个很小的量;

  (4)应具有高度磁化和稳定的性能,这就要求磁流变液中的强磁性粒子的分布必须均匀,而且分布率保持不变;

  (5)应具备极高的“击穿磁场”,以防止磁流变液被磨损并改变性能;

  (6)应在相当宽的温度范围内具有极高的稳定性,以保证磁流变液的流变性能不会在正常工作温度范围内发生改变;

  (7)构成磁流变液的原材料应是价廉的而不是稀有的。

  目前国际上关于磁流变液材料制备方法和工艺的报道比较多。中国科技大学磁流变研究组陈祖耀、江万权等人用Y-辐射技术产生直径在200nm~5μm 的Co粒子,并将铁颗粒表面复合此纳米尺寸的Co粒子,形成铁复合物为悬浮粒子制备的磁流变液。在中国科技大学的旋转式磁流变液测试系统上测试,结果表明剪切屈服应力显著增大;用直径为2.5μm~8μm羰基铁粉分散于硅油中,并用偶联剂预先处理,改善液态相和固态相的相容性,可有效防止粒子沉淀,该磁流变液效应显著,且具有较大的温度稳定性。2002年,中国科学技术大学磁流变研究组成功地筛选制备了KDC—1磁流变液,该样品实验室工艺稳定,有较大的剪切屈服强度和沉降稳定性,其主要力学性能指标与美国Lord公司产品接近。现已完成对3家友邻研究单位KDC—1 MRF小批量实验室规模供给,反映良好。

  磁流变液的制备、机理和应用(1)为真空技术网首发,转载请以链接形式标明本文首发网址。

  http://www.chvacuum.com/seal/dynamic/021904.html

  与 动密封 磁流体 磁流变液 磁流变弹性体 相关的文章请阅读:

  动密封http://www.chvacuum.com/seal/dynamic/